Сборник избранных трудов V Международного конгресса «Слабые и сверхслабые поля и излучения в биологии и медицине»

НИЗКОЧАСТОТНАЯ ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ ЧЕТЫРЕХФОТОННОГО РАССЕЯНИЯ СВЕТА В ГИДРАТНЫХ ОБОЛОЧКАХ БИОПОЛИМЕРОВ И УГЛЕРОДНЫХ НАНОТРУБОК

А.Ф.Бункин, С.М.Першин

Институт общей физики РАН, 119991, ул.Вавилова, 38, Москва, Россия, <u>abunkin@orc.ru;</u> <u>pershin@orc.ru</u>

введение

В связи с развитием био- и нанотехнологий в последнее время пристальное внимание уделяется изучению состояния вещества на границах, разделяющих воду и биомолекулы, воду и гидрофильные/гидрофобные наночастицы, нанокапли масла, воду в микро- и нано- капиллярах [1-5]. Физическое состояние воды в гидратной оболочке существенно зависит от характера взаимодействия молекулы H_2O и гидратируемой наночастицы. Так, еще в 1973 г. было высказано предположение [6], что на границе воды и гидрофобной частицы должен образовываться слой, плотность которого существенно меньше плотности воды в остальном объеме. Это представление было развито в теоретических работах [1,2,7], а также в последнее время нашло экспериментальное подтверждение в работах по рассеянию рентгеновского излучения на границах воды и мономолекулярных слоев гидрофобных полимеров [8,9], в исследованиях теплопроводности пограничных слоев воды и гидрофобных наночастиц [10].

С другой стороны, к настоящему времени накоплен обширный экспериментальный материал, убедительно показывающий, что гидрофильные биомолекулы, в частности, многие белки, лактоза, структурируют молекулы воды в гидратном слое, создавая структуры, аналогичные гексагональному или кубическому льду при комнатной температуре [11-13]. Этим свойством, в частности, обладают белки, входящие в состав хитинового покрытия насекомых [11,12]. По этой причине насекомые легко переносят многократное замораживание/размораживание, т.к. вода в их хитиновых панцирях всегда имеет структуру гексагонального льда [11]. Основные исследования в этой области проводятся по рассеянию рентгеновского излучения [11,12] и медленных нейтронов. Существуют несколько работ по терагерцовой спектроскопии гидратных оболочек гидрофильных биомолекул [13,14], полученных в тонких водяных пленках.

Основная трудность исследования гидратных слоев биомолекул и наночастиц с помощью оптической спектроскопии состоит в малом количестве молекул, входящих в гидратный слой, сигнал от которых нужно выделить на фоне сигнала молекул воды, расположенных вне этого слоя. Поэтому, применяемый метод должен быть неразрушающим, достаточно чувствительным (т.е. иметь высокое отношение сигнал – шум), он должен давать возможность проводить измерения в той области, где оптический спектр максимально зависит от межмолекулярных взаимодействий. Для воды этой областью является диапазон от единиц до ~200 см⁻¹, где расположены трансляционные (~180 см⁻¹) и поперечные (~ 60 см⁻¹) межмолекулярные колебания.

Исследования в указанной области с помощью оптической спектроскопии являются трудноосуществимыми, поскольку, с одной стороны, в настоящее время отсутствуют эффективные, перестраиваемые в широкой области источники микроволнового излучения и чувствительные приемники для осуществления ИК и микроволновой спектроскопии. С другой стороны, успешному применению спонтанного комбинационного рассеяния (КР) препятствует низкая интенсивность резонансных линий, относящихся к межмолекулярным колебаниям [15], и высокий уровень засветок вблизи возбуждающей линии, вызванных упругим рассеянием зондирующего лазерного излучения. Дополнительным препятствием для использования ИК и микроволновой спектроскопии является необходимость использования тонких слоев водных растворов с неустранимым влиянием границы раздела воздух-жидкость в свободно истекающей струе либо жидкость-стенка в кювете. Кроме этого спектроскопия поглощения (ИК и микроволновая) всегда сопровождается неконтролируемым нагревом образца.

Для решения задач такого типа и принципиального исключения влияния рассмотренных факторов может быть эффективно использована лазерная спектроскопия четырехфотонного рассеяния (ЧФР) света [16-18]. Эта нелинейно-оптическая спектроскопия дает возможность существенно повысить отношение сигнал/шум, в частности, в низкочастотной области спектра за счет фазирования в макроскопическом объеме атомных и молекулярных движений с помощью двух лазерных волн с частотами ω_1 и ω_2 , разность которых ($\omega_1 - \omega_2$) сканируется в широкой области спектра от ближнего ИК до сантиметрового диапазона без изменения схемы измерения. Измеряемым параметром служит интенсивность

излучения на частоте $\omega_s = \omega_1 - (\omega_1 - \omega_2)$, прошедшего поляризационный анализатор, скрещенный с поляризацией волны $E^{(2)}$, нелинейный источник которого [19]:

$$P_{i}^{(3)} = 6\chi_{ijkl}^{(3)}(\omega_{s};\omega_{l};\omega_{2};-\omega_{l}) E_{j}^{(l)}E_{k}^{(2)}E_{l}^{(l)*}$$
(1)

Здесь $\chi^{(3)}$ – кубическая восприимчивость среды, $E^{(1)}$ и $E^{(2)}$ - амплитуды взаимодействующих полей, интенсивность регистрируемого сигнала $I_s \propto |\chi^{(3)}|^2 I_1^2 I_2$. При настройке разности частот ($\omega_l - \omega_2$) на частоту какого-либо колебательного или вращательного молекулярного резонанса на этом переходе в исследуемой среде возникает ансамбль когерентных состояний, описываемым коллективными квантовомеханическими переменными [20].

В наших работах [16-18] в области 0-100 см⁻¹ с помощью этого подхода был обнаружен вращательный спектр молекул H_2O и D_2O в легкой и тяжелой воде, соответственно, частоты которого совпадали в пределах ошибки ±0.2 см⁻¹ с вращательными резонансами этих молекул в газовой фазе. В водных растворах перекиси водорода [16] при тех же частотных отстройках наблюдалось существенное (на порядок) усиление вклада вращательных резонансов молекул воды в сигнал четырехфотонного рассеяния. Существенно, что аналогичный эффект увеличения интенсивности линий вращательных переходов наблюдался при повышении температуры воды [21], что было ожидаемо и согласуется с термодинамикой. Значит, обнаруженные резонансы действительно отражают вращательное движение свободных молекул H_2O в воде.

ОРТО И ПАРА-СПИН ИЗОМЕРЫ Н₂О В ВОДЕ

Важной задачей, возникающей в физике жидкого состояния, и, в частности, в физике воды, является понимание особенностей водородной связи в средах, молекулы которых отличаются ядерным спином атомов водорода. Примером таких молекул являются орто- и пара- спин-изомеры молекулы воды, в которых суммарный спин атомов водорода равен либо 1 (орто - молекулы) либо 0 (пара - молекулы). Молекулы орто- и пара- изомеров H₂O в равновесных условиях существуют в концентрации 3:1. Они отличаются вращательным спектром [22] и хорошо идентифицируются в газовой фазе [23]. Ранее было обнаружено, что при пропускании водяного пара через пористый материал с развитой поверхностью, происходит обогащение паров воды молекулами орто-изомеров [23]. Сорбция спин-изомеров на поверхности органических (ДНК, белок лизоцим) и неорганических соединений также происходит с различной скоростью [24].

Предполагается, что наблюдаемое селективное связывание спин-изомеров объясняется тем, что непрерывно вращающиеся орто-изомеры молекулы воды обладают большей подвижностью, тогда как пара-молекулы характеризуются большей способностью к образованию комплексов, поскольку в основном состоянии часть молекул не вращается. При этом первый уровень орто-изомеров смещен от нулевого уровня на 23.8 см⁻¹, поэтому в свободном состоянии эти молекулы вращаются всегда. Механизм образования и существования, а также спектроскопические проявления орто- и пара-изомеров воды в жидкой фазе остаются пока до конца неясными. Не было установлено также, существует ли какая-либо селективность спин-изомеров при межмолекулярных взаимодействиях в водных растворах.

Целью экспериментов, описанию которых посвящена данная работа, являлась регистрация спектров ЧФР в диапазоне ± 250 см⁻¹ с высоким спектральным разрешением в дистиллированной воде, в растворах и суспензиях различных биополимеров и углеродных нанотрубок. В указанном спектральном диапазоне сосредоточены вращательные переходы основного электронного состояния молекул H₂O и H₂O₂, а также резонансы продольных и поперечных межмолекулярных колебаний молекул H₂O в воде. Сравнение вращательных спектров орто- и пара-изомеров молекулы H₂O в дистиллированной воде и в водных растворах обычных и денатурированных молекул ДНК, в молекулах белков позволили обнаружить селективность взаимодействия данных молекул и пара-изомеров молекулы H₂O. Сопоставление спектров водных растворов и суспензий биополимеров и углеродных нанотрубок, с одной стороны, и водных растворов перекиси водорода, с другой, позволили впервые в прямом эксперименте по спектральным линиям установить факт образования молекул H₂O₂ на поверхности некоторых биополимеров и наночастиц в водной среде, ранее наблюдавшихся по косвенным признакам [25].

Изучение ЧФР лазерного излучения в области ± 3 см⁻¹ показало значительное отличие спектров водных суспензий гидрофобных и гидрофильных примесей, позволяющее предположить существование льдоподобных структур на границе гидрофильная частица/вода, а также разреженного слоя на границе воды с гидрофобной частицей.

В данном разделе мы остановимся только на основных, наиболее характерных результатах, иллюстрирующих различные аспекты взаимодействия наночастиц и биомолекул с молекулами воды в гидратных слоях, обнаруженные с помощью спектроскопии четырехфотонного рассеяния света. Основное внимание будет уделено экспериментальным аспектам, методике измерений, возможным приложениям и интерпретации полученных результатов. Будут представлены результаты измерений спектров ЧФР лазерного излучения в водных растворах ДНК, денатурированной ДНК и белка. α -химотрипсин в диапазонах ± 10 см⁻¹ и 70–100 см⁻¹. Измерение спектров водных суспензий одностенных углеродных нанотрубок, проведенные нами в диапазонах ± 10 см⁻¹ и 100-250 см⁻¹, позволили с одной стороны, впервые в прямом оптическом эксперименте наблюдать существование разреженного слоя воды на границе воды с гидрофобной частицей (в данном случае с углеродной нанотрубкой), с другой стороны, впервые наблюдать дыхательные моды углеродных нанотрубок в водной суспензии и прямо измерить кубическую нелинейность соответствующих резонансов КР, путем сравнения линий КР дыхательных мод, вращательных линий молекулы H₂O, возникающих в гидратном слое нанотрубок, и резонанса Бриллюэна, нелинейную восприимчивость которого можно оценить, пользуясь табличными значениями для дистиллированной воды.

ЭКСПЕРИМЕНТ

Эксперименты проводились на установке, изображенной на рис.1а, б и подробно описанной в [27].

рис.1а

Рис.1а. Схема экспериментальной установки. Лазерная часть: (1)- одночастотный Nd:YAG лазер, (2) – многопроходные квантовые усилители на Nd:YAG, (3)- генераторы второй гармоники, (4) – генератор третьей гармоники, (5) – перестраиваемый по длине волны излучения лазер на красителе, (М) – зеркала, (L)- линза. Стрелками показаны лазерные лучи.

рис.1b

Рис.1b.Схема экспериментальной установки. Измерительная часть: (1) – поляризаторы (призмы Глана), (2) – кювета с исследуемой жидкостью, (3) – система регистрации, (4) – четвертьволновая пластинка, (М) – зеркала.

Две встречные волны $E^{(1)}$ и $E^{(2)}$ с частотами ω_l и ω_2 распространялись в кювете с изучаемой жидкостью. Входное и выходное окна кюветы изготовлены из плавленого кварца и имели низкий уровень деполяризации проходящего лазерного излучения. Волна $E^{(1)}$ (излучение второй гармоники Nd:YAG лазера, работающего на одной продольной моде) имела круговую поляризацию, перестраиваемая по частоте волна $E^{(2)}$ была линейно поляризована. При такой поляризации взаимодействующих волн [19] в сигнале, определяемом нелинейностью (1), отсутствует нерезонансный вклад от электронной подсистемы среды.

Поскольку орты поляризации волны сигнала на частоте ω_s и волны $E^{(2)}$ неколлинеарны, а их направления распространения совпадают, сигнал выделялся призмой Глана. Ширина аппаратной функции спектрометра (~0.12 см⁻¹) и спектральный диапазон (от –1200 до 300 см⁻¹) определялись выходными характеристиками лазера на красителе, который накачивался излучением третьей гармоники *Nd:YAG* лазера и обеспечивал перестройку по частоте волны $E^{(2)}$ по программе, задаваемой в компьютере. Для каждого значения частоты ω_2 производилось усреднение сигнала по 10-30 отсчетам, затем частота лазера перестраивалась автоматически с шагом ~0.119см⁻¹. Нулевая частотная отстройка привязывалась с точностью до 0.02 см⁻¹ по резонансам Бриллюэна, дальнейшая перестройка длины волны контролировалась по модам интерферометра Фабри-Перо с базой 7мм. Максимальная ошибка амплитуды сигнала ЧФР задавалась программно в начале каждого измерения и обычно не превышала 10%. Точность измерения частот резонансов определялась шириной аппаратной функции спектрометра (0.12 см⁻¹) и остаточным люфтом механической системы поворота дифракционной решетки лазера на красителе, поэтому на частотных отстройках ~ 100 см⁻¹ расхождение измеряемых и табличных частот резонансов могло достигать 0.3 см⁻¹.

Эксперименты проводились в дважды дистиллированной воде, в водных растворах белка α химотрипсин (концентрации 10 и 17 мг/мл), нативной и денатурированной ДНК (15мг/мл), в 3% водном растворе перекиси водорода (H₂O₂), в водной суспензии одностенных углеродных нанотрубок с концентрацией менее 0.1 мкг/мл (оценочно менее 10⁹ волокон нанотрубок в зондируемом объеме). Денатурация ДНК вызывалась нагревом раствора до 90⁰С с последующим охлаждением до комнатной температуры. Образцы помещались в термостабилизированную при комнатной температуре кювету длиной 100 мм. Сигнал четырехфотонного рассеяния возникал в области пересечения волн накачки длиной ~ 5 мм. Дополнительная дегазация изучаемых жидкостей не проводилась.

Процедура получения ДНК описана в [28]. Концентрация ДНК определялась спектрофотометрически. Углеродные нанотрубки синтезировались в электрическом дуговом разряде в атмосфере гелия при давлении 650 Торр по методике, изложенной в [29]. Предварительное изучение морфологии образцов нанотрубок с помощью сканирующего электронного микроскопа обнаружило, что высушенный образец содержит волокна длиной до 500 нм, состоящих из 5 – 10 нанотрубок диаметром 1-2 нм.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На начальном этапе экспериментов был подробно изучен спектр ЧФР в дважды дистиллированной воде в диапазоне 0-250 см⁻¹. Целью этих экспериментов являлось выявление воспроизводимости спектров, а также их корреляция с известными данными [30] по спонтанному комбинационному рассеянию и ИК поглощению в жидкой воде в низкочастотном спектральном диапазоне. Известно, что в воде в области 180 см⁻¹ расположен широкий максимум, вызванный колебаниями молекул H₂O вдоль водородной связи. Этот максимум легко обнаруживается в спектрах ЧФР в дважды дистиллированной воде (см. рис.2), где приведен спектр ЧФР низкого разрешения, полученный из экспериментального спектра сглаживанием в текущем окне размером 5 см⁻¹.

Рис.2.

Видно, что спектр ЧФР имеет выраженный максимум на ~ 170 см⁻¹ в хорошем соответствии с данными [30]. Остальные спектры ЧФР, приведенные в этом разделе, получены со спектральным разрешением 0.12 см⁻¹, что намного превосходит существующие в настоящее время возможности классической спектроскопии конденсированных сред в низкочастотной области.

На рис.3 приведен спектр четырехфотонного рассеяния в диапазоне от -75 до -90 см⁻¹ в воде, полученной из дважды дистиллированной воды путем пропускания через фильтры с отверстиями диаметром ~ 300 нм.

Рис.3. Спектр четырехфотонного рассеяния би-дистиллированной воды в диапазоне -75 -90 см⁻¹. Тонкими (толстыми) стрелками обозначены резонансы орто- (пара-) изомера H₂O, над стрелками указаны вращательные квантовые числа *J*, K_a , K_c начального и конечного уровней соответствующих переходов основного изотопа молекулы H₂O, пунктирными стрелками обозначены резонансы H₂O₂ и OH.

В спектре отчетливо видны резонансы, относящиеся по данным [22] к наиболее сильным вращательным переходам основного колебательного состояния пара- и орто- спин-изомеров молекул H_2O , а также к вращательным переходам молекул H_2O_2 и OH, которые могут образовываться в воде при флеш-фотолизе под действием лазерного излучения [31, 32]. Совпадение частот резонансов с табличными значениями [22] для всех переходов находится в пределах 0.3 см⁻¹, что сравнимо с аппаратной функцией используемого спектрометра. Такое расхождение выглядит приемлемым, поскольку частотное положение многих линий вращательного и колебательно-вращательного спектров молекул воды в разных таблицах варьируется в пределах 2-3 десятых см⁻¹. Резонансы обозначены стрелками разного вида, на рис.3 над стрелками указаны вращательные квантовые числа J, K_a , K_c начального и конечного уровней соответствующих переходов основного изотопа молекулы H_2O .

На рис.4 представлены спектры ЧФР в водных растворах белка α -химотрипсин (концентрация 17 мг/мл) (2), ДНК (15мг/мл) (3) в том же спектральном диапазоне и для сравнения приведен спектр дважды дистиллированной воды (из рис.3), умноженный в ~ 8 раз (1). Резонансы орто- (пара-) спинизомеров H₂O обозначены так же, как на рис.3. Из рис.4 видно, что спектры растворов обоих биополимеров и дважды дистиллированной воды содержат многочисленные вращательные резонансы орто- (пара-) молекул воды, обозначенные толстыми и тонкими стрелками. В спектрах обоих растворов биополимеров наблюдается существенный рост (в ~ 8 раз) вклада вращательного спектра в сигнал четырехфотонного рассеяния, по сравнению с дважды дистиллированной водой.

Рис.4. Спектры четырехфотонного рассеяния в дважды дистиллированной воде (1), водных растворах белка α-химотрипсин (концентрация 17 мг/мл) (2) и ДНК (15мг/мл) (3) в диапазоне –75 –90 см⁻¹. Резонансы обозначены так же, как на рис.1.

Было проведено сравнение спектров биополимеров в некоторых узких диапазонах. На рис.5а, в приведены фрагменты спектров в диапазонах -86 -90 см⁻¹ (рис.5а) и -77 -81 см⁻¹ (рис.5b), где содержатся характерные линии орто- и пара- спин-изомеров H₂O, отмеченные тонкими и толстыми стрелками. Видно (рис. 5а), что резонансы орто- спин-изомеров H₂O (тонкие стрелки) присутствуют как в спектре дважды дистиллированной воды, так и в спектрах водных растворах обоих биополимеров, тогда как вклад резонансов пара- спин-изомеров H₂O (толстые стрелки) в спектры белка и ДНК подавлены.

На рис.6 изображены спектры четырехфотонного рассеяния водных растворов нативной ДНК (15мг/мл) и денатурированной ДНК через 2 часа после нагревания (умноженный в 2.5 раза).

В спектрах видны вращательные резонансы орто- и пара- спин-изомеров молекулы H_2O , а также молекул H_2O_2 , обозначенные так же как на рис.3-5. Видно, что денатурация ДНК в водном растворе приводит к существенной модификации соответствующего спектра ЧФР. В частности, происходит примерно трехкратное уменьшение интенсивности вращательных линий молекулы H_2O . Кроме этого, вблизи –80 и –79 см⁻¹ на спектрах дважды дистиллированной воды (1) и денатурированной ДНК (2) отчетливо видны вращательные линии пара- спин-изомеров H_2O , тогда как в спектре «живой» ДНК вклад этих линий существенно подавлен. В спектре денатурированной ДНК (2) также заметен рост вращательных линий H_2O_2 .

Мотивацией изучения спектров ЧФР лазерного излучения в водных суспензиях углеродных нанотрубок вызвано необходимостью создания новых нано- и био- технологий с участием этих объектов, в частности новых поколений биосенсоров [34]. Ясно, что для развития этих работ нужно создать методики, позволяющие изучать параметры нанотрубок и характер их взаимодействия с окружающими молекулами в нативной среде, каковой является вода и водные растворы. Таким образом, задача состоит из двух частей: 1. измерение характеристик нанотрубок в водной суспензии; 2. изучение спектров воды в гидратной оболочке нанотрубок.

рис.5b

Рис.5. Фрагменты спектров рис.4 в диапазонах –86 –90 см⁻¹ (рис.5а) и –77 –81 см⁻¹ (рис.5b) в дважды дистиллированной воде (1) и в водных растворах белка α-химотрипсина (концентрация 17 мг/мл) (2) и нативной ДНК (15мг/мл) (3). Тонкими (толстыми) стрелками обозначены резонансы орто- (пара-) изомера H₂O.

Рис.6. Спектры ЧФР в дважды дистиллированной воде (1) и в водных растворах денатурированной ДНК (2) и ДНК (3). Вблизи –80 и –79 см⁻¹ на спектрах (1) и (2) видны вращательные линии параспин-изомеров H₂O.

Для определения геометрических характеристик нанотрубок необходимо измерять частоты их радиальных дыхательных мод (РДМ), ω_{RBM} , [35], однозначно связанных [36] с диаметром трубок:

$$\omega_{RBM} = C_l / d_t + C_2 \tag{2}$$

где d_t – диаметр нанотрубок, а эмпирические константы C₁=218 нм/см⁻¹ и C₂=17 см⁻¹ или C₁=223 нм/см⁻¹ С₂=10 см⁻¹ соответствуют металлическим или полупроводниковым типам трубок.

На рис.7 а,b,с изображены 3 участка спектров четырехфотонного рассеяния в водной суспензии углеродных нанотрубок в диапазоне 100 – 250 см⁻¹, где были выявлены наиболее сильные отличия от спектра воды. Кривые (1) на рис.7 а-с изображают спектры ЧФР водной суспензии нанотрубок, кривые (2) – вода. Пунктирные стрелки на рис.7 а-с изображают обнаруженные дыхательные моды (РДМ), тонкие и жирные стрелки (рис.7 а) показывают вращательные линии КР, соответствующие орто- и пара- спин-изомерам молекулы H₂O.

Спектры на рис.7 а-с показывают, что РДМ четко регистрируются с высоким отношением сигнал/шум в водных суспензиях нанотрубок при их сравнительно низкой концентрации (менее 0.1 мкг/мл). Наблюдаются три группы РДМ (вблизи 118 см⁻¹, 165 см⁻¹ и 235 см⁻¹), каждая группа состоит из 3-4 пиков РДМ, расположенных через ~1.5 см⁻¹. Такая структура РДМ может объясняться переплетением нанотрубок в волокна, что ранее наблюдалось в сухих образцах [37]. Простые оценки по (2) диаметров нанотрубок показывают, что в изучаемом образце присутствуют нанотрубки диаметрами $d_t \sim 2$ нм ($\omega_{RBM}/2\pi$ C=118 см⁻¹, рис.7а), ~1.5 нм ($\omega_{RBM}/2\pi$ C=165 см⁻¹, рис.7b) и ~1 нм ($\omega_{RBM}/2\pi$ C=235 см⁻¹, рис.7c), что находится в хорошем согласии с данными по морфологии образцов, полученными ранее на сканирующем электронном микроскопе.

На рис.8a, b; 9a, b; и 10a, b, с изображены результаты экспериментов по наблюдению спектров ЧФР в водной суспензии нанотрубок, а также в водных растворах белка α -химотрипсин и ДНК в диапазоне ± 10 см⁻¹.

рис.7с

Рис.7. Фрагменты спектров четырехфотонного рассеяния света в суспензии углеродных нанотрубок (1) и дважды дистиллированной воде (2) в диапазонах 100-120 см⁻¹ (а), 150-170 см⁻¹ (b) и 220 - 250 см⁻¹ (c). Пунктирные стрелки отмечают радиальные дыхательные моды нанотрубок, тонкие и толстые стрелки отмечают вращательные резонансы КР орто- и пара- спин-изомеров молекулы H_2O , соответственно.

На рис.8а изображены полученные при сходных экспериментальных условиях спектры ЧФР дважды дистиллированной воды (кривая I, квадраты), суспензии нанотрубок (кривая II, треугольники) и 3% водного раствора перекиси водорода (кривая III, круги). Каждая экспериментальная точка накапливалась по 30 лазерным выстрелам с шагом ~0.12 см⁻¹. На рис. 8а изображен также рассчитанный спектр ЧФР (сплошная кривая IV). Расчеты велись по процедуре, описанной в [18].

Рис.8а Спектры четырехфотонного рассеяния света в дважды дистиллированной воде (кривая I, квадраты), водной суспензии нанотрубок (кривая II, треугольники) и 3% водный раствор перекиси водорода (кривая III, круги). Каждая спектральная точка накапливалась по 30 лазерным вспышкам с шагом ~0.12 см⁻¹. Кривые III и II сдвинуты по оси ординат на 0.1 и 0.2 относительные единицы, соответственно. Тонкими и толстыми стрелками отмечены резонансы Бриллюэна суспензии нанотрубок и би-дистиллированной воды, соответственно. Цифры*1-11* отмечают различные вращательные резонансы КР молекул H_2O_2 и H_2O . Сплошная кривая (IV) отмечает расчетный спектр водной суспензии нанотрубок.

Рис.8b. Спектр четырехфотонного рассеяния света в дважды дистиллированной воде, растянутый по оси ординат в 10 раз. Цифры *2-8* отмечают вращательные резонансы КР молекул H₂O₂ и H₂O.

Для удобства рассмотрения спектры III и II на рис.8а сдвинуты по оси ординат на 0.1 и 0.2 относительные единицы, соответственно. Тонкими и жирными стрелками здесь отмечены пики резонансов Бриллюэна в суспензии нанотрубок и дважды дистиллированной воды. Символами 1-11 на рис.8а отмечены вращательные резонансы КР молекул H₂O₂ и H₂O, наблюдаемые как в суспензии нанотрубок, так и в водном растворе перекиси водорода. Символами 2, 3, 4, 6, 7, 10, 11 отмечены вращательные резонансы молекулы H_2O_2 (2₁₁-1₀₁) (1.25 см⁻¹), (8₂₇-9₁₉) (1.47 см⁻¹), (10₁₉-9₂₇) (1.8 см⁻¹), $(7_{07}-7_{17})$ (2.75 cm⁻¹), $(9_{09}-9_{19})$ (3.06 cm⁻¹), $(16_{016}-16_{116})$ (4.65 cm⁻¹), $(4_{13}-3_{03})$ (4.8 cm⁻¹), a цифры *I*, 5 (6₁₆ -5₂₃) (0.74 см⁻¹), (4₁₄-3₂₁) (2.26 см⁻¹) и 8, 9 (4₄₀-5₃₃) (3.21 см⁻¹), (2₂₀-3₁₃) (4.0 см⁻¹) отмечают вращательные резонансы орто- и пара- спин-изомеры молекулы H₂O. Здесь, в скобках указаны вращательные квантовые числа J, K_{a}, K_{c} , и волновые числа соответствующих переходов КР согласно классификации [22]. Лучшее соответствие расчетных (сплошная кривая IV) и экспериментальных спектров рис.8а наблюдалось для концентрации 15% молекул H₂O₂ в гидратном слое суспензии нанотрубок в воде. На рис.8b показан спектр ЧФР дважды дистиллированной воды, растянутый в 10 раз по оси ординат, где также хорошо видны резонансы, соответствующие вращательным переходам в молекулах H₂O₂ и Н₂О, присутствующие также на спектрах рис.8а. Амплитуды пиков вращательных резонансов в дважды дистиллированной воде примерно на порядок меньше, чем в водной суспензии нанотрубок.

Таким образом, спектры ЧФР, изображенные на рис.8а, b показывают следующее: (1) спектры водной суспензии нанотрубок, водного раствора перекиси водорода и дважды дистиллированной воды содержат одинаковый набор резонансов, соответствующих вращательным переходам молекул H₂O₂ и H₂O, при этом добавление в воду нанотрубок (при концентрации 0.1 мкг/мл) увеличивает на порядок по сравнению с дважды дистиллированной водой сигнал ЧФР, вызванный вращательными переходами; (2) сравнение кривых II и III на рис.8а показывает, что в спектре водной суспензии нанотрубок происходит существенный рост вклада вращательных линий Н₂O₂, что, очевидно, свидетельствует о возникновении молекул перекиси водорода на границах углеродных нанотрубок и воды. Отметим, что генерация перекиси водорода в водных суспензиях фуллеренов косвенно обнаруживалась ранее по окислению специальных реагентов [38], однако прямые наблюдения отсутствовали. Другое важное обстоятельство, вытекающее из экспериментов, результаты которых представлены на рис.8а и 8b, заключается в дополнительном экспериментальном подтверждении существования слоя воды пониженной плотности вблизи гидрофобной поверхности наночастиц, который наблюдался ранее по рассеянию рентгеновских лучей [8,9] и предсказанный в теоретических работах [1,2,7]. Вклад вращательного спектра молекул H₂O₂ и H₂O в сигнал ЧФР растет с ростом размера гидратного слоя и пропорциональным ростом концентрации молекул в этом слое. При этом основная часть молекул воды не дает вклада во вращательный спектр, будучи связанной в молекулярные комплексы за счет водородной связи.

Из спектров, представленных на рис.7, 8 следует, что спектроскопия ЧФР позволяет в рамках единой методики измерений получать спектры рассеяния Бриллюэна в водной суспензии нанотрубок (\pm 0.2 см⁻¹), вращательных резонансов молекул H₂O в гидратном слое нанотрубок, лежащих в спектральном диапазоне от 1 до 250 см⁻¹ и радиальных дыхательных мод нанотрубок в области от 100 до 250 см⁻¹. Это позволяет провести оценку кубической нелинейной восприимчивости дыхательных мод нанотрубок, путем сравнения величин соответствующих резонансных пиков нанотрубок и резонанса Бриллюэна, восприимчивость которого может быть рассчитана из первых принципов с использованием известных макроскопических параметров дистиллированной воды. В этом случае амплитудная привязка резонансов разной природы, лежащих в разных спектральных диапазонах (\pm 0.2 см⁻¹ и 100 - 250 см⁻¹) может быть проведена по вращательным резонансам молекулы H₂O, существующим во всем диапазоне измерений 0-250 см⁻¹. Отметим, что такая возможность отсутствует в других методах оптической спектроскопии (ИК поглощение, спонтанное KP), применяемых для изучения оптических характеристик нанотрубок в сухих образцах.

Для решения этой задачи мы использовали резонанс орто- спин-изомера молекулы H_2O ($6_{16} - 5_{23}$) (0.74 см⁻¹), величина которого легко сравнивается с резонансом Бриллюэна водной суспензии нанотрубок (см. рис. 8а). В свою очередь, нелинейная Бриллюэновская восприимчивость воды может быть пересчитана из точно измеренной резонансной Бриллюэновской восприимчивости CS₂, равной 6.5•10⁻¹² СГСЭ (см³/эрг) [39]. Простые оценки, с учетом аппаратной функции используемого в наших измерениях спектрометра, показывают, что пиковое значение резонансной Бриллюэновской кубической восприимчивости суспензии нанотрубок для концентрации, используемой в наших экспериментах составляло ~1.2•10⁻¹⁴ СГСЭ. Сравнение пиков Бриллюэна и орто- спин-изомера молекулы H_2O ($6_{16} - 5_{23}$) (0.74 см⁻¹) позволяют оценить соответствующую резонансную восприимчивость как ~ 1•10⁻¹⁵ СГСЭ.

Далее можно оценить резонансную восприимчивость линии H₂O с центральной частотой 108 см⁻¹, отмеченной на рис. 7а тонкой стрелкой: ~1•10⁻¹¹ СГСЭ. Для этой оценки мы использовали отношение матричных элементов вращательных переходов с частотами 108 см⁻¹ and 0.74 см⁻¹, равное (~10⁴). Сравнивая величины пиков КР вращательной линии молекулы H₂O с центральной частотой 108 см⁻¹ и радиальных дыхательных мод с частотами 118 см⁻¹, 165 см⁻¹ и 235 см⁻¹ можно оценить их пиковую кубическую нелинейность как ~1•10⁻¹¹ СГСЭ, а соответствующую гиперполяризуемость (т.е. нелинейность одной нанотрубку, учитывая их оценочную плотность в исследуемом объеме) как ~ 1•10⁻²⁰ см⁶/эрг. Отметим, что это довольно высокое значение, учитывая, что типичное значение резонансной кубической гиперполяризуемости атомов и молекул составляет ~ 1•10⁻²⁹ см⁶/эрг. Однако, эта величина качественно соответствует единственному известному нам результату измерений резонансной кубической поляризуемости углеродных нанотрубок, проведенных недавно с помощью вынужденного КР в сухих образцах [40].

На рис.9, изображены спектры ЧФР дважды дистиллированной воды и водного раствора белка α -химотрипсин в концентрации 10 мг/мл в диапазоне ± 3 см⁻¹ (±90 ГГц). Каждая экспериментальная точка накапливалась по 30 лазерным вспышкам с шагом ~0.12 см⁻¹.

Рис.9 Фрагмент спектра ЧФР в дважды дистиллированной воде (кривая 1, круги) и в водном растворе белка αхимотрипсин в концентрации 10мг/мл (кривая 2, квадраты). Две линии в середине каждого спектра (отмеченные жирными стрелками) являются резонансами Бриллюэна. Тонкие и пунктирные стрелки показывают вращательные линии КР (4₁₄ – 3₂₁) (±2.26 см⁻ ¹) орто- спин-изомера H₂O и $(2_{11}-1_{01})$ (±1.25 cm⁻¹), (8₂₇-9₁₉) $(\pm 1.47 \text{ cm}^{-1}), (10_{19}-11_{04}) (\pm 2.5)$ ст⁻¹) вращательные резонансы Н₂О₂, соответственно.

Две линии в середине каждого спектра на рис.9 (отмеченные жирными стрелками) являются резонансами Бриллюэна. Тонкие и пунктирные стрелки показывают вращательную линию $(4_{14} - 3_{21})$ (±2.26 см⁻¹) молекулы H₂O (орто- спин-изомер) и линии $(2_{11}-1_{01})$ (±1.25 см⁻¹), $(8_{27}-9_{19})$ (±1.47 см⁻¹), $(5_{05}-5_{15})$ (±2.5 см⁻¹) молекулы H₂O₂. Классификация линий совпадает с проведенной ранее для рис. 8a, b.

Появление вращательных линий молекулы H_2O_2 в спектрах ЧФР водных растворов биополимеров четко прослеживается также на рис.10a, b, c, где изображены спектры в диапазоне от 1 до -7 см⁻¹ для водного раствора ДНК (квадраты) при концентрации 15 мг/мл, и дважды дистиллированной воды (круги) и денатурированной ДНК рис.10c. На рис.10 b показаны экспериментальный (квадраты, тонкая линия) и расчетный (жирная линия) спектры ЧФР водного раствора ДНК. На рис. 10a, b жирными и тонкими стрелками отмечены резонансы Бриллюэна и Рэлея исследованных образцов, пунктирные и штрихпунктирные стрелки отмечают различные вращательные линии молекул H_2O и H_2O_2 , наблюдаемые в водном растворе ДНК. Из спектров ЧФР на рис.10a, b ясно следует, что при использованных в нашем эксперименте концентрациях ДНК в исследуемом растворе наблюдается шестикратный рост сигнала от молекул H_2O_2 , что, по-видимому, означает соответствующее увеличение концентрации перекиси водорода в гидратном слое ДНК.

Для расчетов спектров ЧФР водных растворов ДНК мы использовали стандартные формулы [19]:

$$\chi^{(3)} = \chi^{NR} + \chi^{B} / (-i + (\Delta \pm \Omega_{b}) / \Gamma_{ap}) + \chi^{R} / (-i + \Delta / \Gamma_{R}) + \sum_{n} \chi_{n}^{rot} / (-i + (\Delta \pm \Omega_{n}) / \Gamma_{ap})$$

$$I_{S} \propto \left| \chi^{(3)} \right|^{2} I_{1}^{2} I_{2} \qquad (3)$$

Здесь $2\Gamma_{ap}$ - спектральное разрешение нашей установки (0.12см⁻¹), Γ_R – полуширина крыла линии Рэлея (подгоночный параметр), *i* –мнимая единица, χ_n^{rot} и Ω_n - нелинейная оптическая восприимчивость и центральная частота (в см⁻¹) вращательных переходов молекул H₂O₂ и H₂O, Ω_b – частота резонанса Бриллюэна водного раствора ДНК, измеренная экспериментально по спектрам ЧФР (см. рис. 10a, b), $\Delta = (\omega_1 - \omega_2)/2\pi C$ – частотная отстройка в см⁻¹ (изменяемый параметр), χ^B , χ^R и χ^{NR} - нелинейные кубические восприимчивости резонансов Бриллюэна и Рэлея, а также нерезонансная восприимчивость исследуемого раствора, соответственно. Спектроскопические характеристики молекул H₂O₂ и H₂O были взяты из [22]. Относительная концентрация молекул H₂O₂ и H₂O в гидратном слое ДНК была подгоночным параметром. Из рис.10 b, с видно, что описанная процедура позволяет достичь хорошего согласия экспериментальных и расчетных спектров ЧФР водных растворов ДНК. Сравнение подгоночных параметров для ЧФР спектров, изображенных на рис.10b и 10c показывает, что интенсивность вращательных резонансов H₂O₂ в растворе ДНК после денатурации возрастает в ~3 раза.

Рис.10а. Спектр

четырехфотонного рассеяния света в водном растворе ДНК (квадраты, кривая 1) и дважды дистиллированной воде (круги, кривая 2). Толстые и тонкая стрелки отмечают резонансы Бриллюэна и Рэлея, соответственно. Пунктирные стрелки показывают линии КР $H_2O_2(2_{11}-1_{01}) (\pm 1.25 \text{ cm}^{-1}), (7_{25}-8_{17})$ $(\pm 1.92 \text{ cm}^{-1}), (4_{04}-4_{14}) (\pm 2.41 \text{ cm}^{-1}),$ $(7_{07}-7_{17})$ (±2.75 cm⁻¹), (9₀₉-9₁₉) $(\pm 3.06 \text{ cm}^{-1}), (14_{014}-14_{117}) (\pm 4.12)$ см⁻¹), (16₀₁₆-16₁₁₆) (±4.65 см⁻¹), (21₀₂₁-21₁₂₁) (±6.16 см⁻¹). Штрихпунктирные стрелки отмечают линию КР H₂O (6₁₆ – 5₂₃) (±0.74 см⁻¹), относящуюся к орто- спинизомеру.

Рис.10b. Экспериментальный (точки, тонкая кривая) и расчетный (сплошная кривая) спектры ЧФР водного раствора ДНК (15 мг/мл).

Рис.10с Экспериментальный (точки, тонкая кривая) и расчетный (сплошная кривая) спектры ЧФР водного раствора денатурированной ДНК. Пунктирные и тонкие стрелки изображают вращательные переходы молекул H₂O₂, OH и H₂O соответственно. Толстые стрелки отмечают резонансы Бриллюэна.

На рис.8, 9 обращает на себя внимание тот экспериментальный факт, что в разных водных растворах частотное положение резонансов Бриллюэна заметно отличается. Например, для водной суспензии нанотрубок (рис.8 а) частотный интервал между максимами Бриллюэна $\Delta f_{\rm B}$ равно $\Delta f_{\rm B} \cong \pm 0.12$ см⁻¹ (тонкие стрелки на рис.8 а), для раствора белка α -химотрипсин $\Delta f_{\rm B} =\pm 0.4$ см⁻¹, для дважды

дистиллированной воды $\Delta f_{\rm B} = \pm 0.25 \text{ см}^{-1}$ (см. рис.8а). Известно [41], что величина $\Delta f_{\rm B}$ определяется как:

$$\Delta f_{\rm B} = V_S \ (2 n \sin \varphi/2)/C \lambda \tag{4}$$

где n – показатель преломления, λ – длина волны зондирующего излучения, φ – угол между падающей и рассеянной волнами, C- скорость света в вакууме, V_s - скорость звука в зондируемой среде. Для дистиллированной воды при комнатной температуре и нормальном давлении: n=1.33, $V_s=1490 \ m/c$. Учитывая, что для нашего эксперимента $\lambda=532 \ m$ и $\varphi = \pi$, получаем $\Delta f_B = \pm 0.25 \ cm^{-1}$ в дважды дистиллированной воде, в точном соответствии с измерениями на рис. 8, 9. Причина обнаруженных в данных экспериментах отличий Δf_B для раствора белка и водной суспензии нанотрубок заключается в различной локальной адиабатической сжимаемости данных жидкостей, поскольку, как известно [41]:

$$(V_S)^2 = (\rho K_S)^{-1}$$
 (5)

где K_S – адиабатическая сжимаемость и ρ – плотность жидкости. Обнаруженные существенные отличия величины Δf_B в образцах, содержащих нанотрубки и белок от Δf_B дважды дистиллированной воды, могут быть объяснены только локальным изменением K_S - адиабатической сжимаемости в гидратационных слоях белка и нанотрубок.

Отметим, что использование формул (4) и (5) является не вполне корректным для интерпретации результатов по четырехфотонному рассеянию света на решетке гиперзвуковых волн, возбуждаемых двумя лазерными лучами в локально-неоднородной среде, что имеет место в наших экспериментах. Наблюдаемый на рис.8-10 сдвиг резонансов Бриллюэна отражает вариацию локальных скоростей распространения флуктуаций плотности в среде, состоящей из биополимеров или углеродных нанотрубок, взвешенных в воде, а не скорости во всем макроскопическом образце. Возбуждаемая гиперзвуковая волна локально затухает, успевая, тем не менее, провзаимодействовать с лазерным излучением, что приводит к появлению резонансов Бриллюэна, изображенных на рис.8-10.

ОБСУЖДЕНИЕ И ВЫВОДЫ

Известно, что вода – сильно ассоциированная жидкость. Каждая молекула воды способна образовать до четырех водородных связей со своими соседями. Среднее координационное число водородных связей при комнатной температуре равно 3.5 [15]. Однако проведенные нами эксперименты показывают, что в спектрах четырехфотонного рассеяния лазерного излучения в воде и водных растворах возникают узкие резонансы, частоты которых с точностью до ширины аппаратной функции спектрометра совпадают с частотами вращательных переходов основного электронного и колебательного состояния молекулы H₂O (рис.3). При этом в спектре отдельно идентифицируются линии относящиеся как к орто- так и к пара- модификациям основного изотопа молекулы H₂O. Отметим, что подобная картина возникает при регистрации колебательновращательных спектров молекул H₂O в нанокаплях жидкого гелия [42] и в матрицах твердого аргона [43], где также наблюдаются переходы, соответствующие орто- пара- спин-изомерам и их частоты с точностью до ширины аппаратной функции совпадают с частотами переходов газовой фазы.

Причина возникновения вращательных линий молекул H_2O_2 и H_2O в наблюдаемых нами спектрах из жидкой фазы заключается, очевидно, в физических свойствах воды, гидратированной на поверхности микропримесей и вблизи растворенных ионов [44-46]. Известно [45, 46], что гидратация гидрофильных примесей приводит к структурированию молекул воды в сольватной оболочке примеси. Возникающие топологические ограничения в этом случае препятствуют образованию новых водородных связей между молекулами воды. В результате, среднее число водородных связей приходящихся на одну молекулу заметно снижается, увеличивая вероятность появления свободных молекул и вызывая рост флуктуаций плотности молекул H_2O в сольватной оболочке. Последнее обстоятельство подтверждается расчетами молекулярной динамики [45] и экспериментами по рентгеноструктурному анализу [44]. С другой стороны, согласно недавно опубликованным теоретическим [1, 2, 47, 48] и экспериментальным [8,9] результатам, вблизи гидрофобных поверхностей макромолекул и наночастиц в водных растворах образуется слой воды пониженной плотности, имеющий физические свойства водяного пара, что также приводит к появлению свободных молекул воды и возникновению вращательных резонансов КР в спектре четырехфотонного рассеяния света.

Вращательные линии с усилением почти на порядок наблюдаются (рис.4, 5) в спектрах водных растворов биологических макромолекул (белок, ДНК), что свидетельствует о способности молекул

биополимеров существенно увеличивать эффективную концентрацию квазисвободных молекул воды в сольватной оболочке макромолекулы. Это обстоятельство свидетельствует также в пользу того, что наблюдаемые в эксперименте линии вращательного спектра молекул H₂O не связаны с пузырьками воздуха, которые могут присутствовать в исследуемых образцах.

Соотношение интенсивности линий вращательного спектра орто и пара изомеров воды при добавлении в раствор ДНК или белка увеличивается не пропорционально. Интенсивность вращательного спектра орто- изомеров существенно превосходит интенсивность вращательного спектра пара изомеров в присутствии использованных в наших экспериментах молекул биополимеров (рис.6). Отметим, что ранее [24] наблюдалась селективная сорбция пара-изомеров молекул воды из газовой фазы при их пропускании над поверхностью образцов ДНК, лизоцима и каллагена.

Возможно, указанная селективность взаимодействия орто- пара- спин-изомеров воды с биологическими макромолекулами связана с обнаруженной недавно в модельных расчетах [45, 46] резкой зависимостью характера гидратации (притягивания или отталкивания молекул H₂O) от флуктуаций поляризуемости комплекса молекула H₂O – молекула примеси. Эта характеристика может быть различной для орто- и пара- спин-изомеров H₂O.

При денатурации ДНК селективность взаимодействия уменьшается (рис.7). Учитывая, что энергия гидратации является заметным фактором в предпочтительности той или иной конформации макромолекулы в растворе, очевидно, что изменение орто/пара отношения молекул воды в клетке может существенно влиять на равновесные значения концентраций функционально важных состояний макромолекул *in vivo*, и, следовательно, на функционирование клеток.

Образование молекул H_2O_2 и OH в гидратных слоях углеродных нанотрубок и биополимеров, обнаруженное в наших экспериментах спектроскопически (рис.8-10), качественно подтверждает результаты ранее проведенных экспериментов [25], в которых наблюдалось окисление малых примесей люминофоров в водных растворов фуллеренов.

Спектры четырехфотонного рассеяния лазерного излучения в водных растворах биополимеров (белок, ДНК, денатурированная ДНК) и в дважды дистиллированной воде обнаруживают резонансы вращательных переходов орто- и пара-изомеров основного изотопа молекулы H₂O, а также молекул H₂O₂ и OH.

Резонансный вклад вращательного спектра молекул H_2O в сигнал четырехфотонного рассеяния существенно возрастает при переходе от воды к растворам биополимеров. Механизм этого явления до конца неясен, однако можно предположить, что присутствие молекул биополимеров приводит к нарушению исходной топологии сетки водородных связей в гидратной оболочке, увеличивая концентрацию слабо связанных и свободных молекул H_2O .

Обнаружено, что нативные молекулы белка и ДНК в растворе селективно взаимодействует с пара-изомерами H₂O. При денатурации ДНК селективность взаимодействия не обнаружена. Не обнаружена она и в водных суспензиях углеродных нанотрубок.

Представленные в данной работе результаты также показывают, что спектроскопия ЧФР света в водных суспензиях нанотрубок позволяет измерять кубическую нелинейность их радиальных дыхательных мод (рис.7), сравнивая вклады в сигнал резонансов Бриллюэна (рис.8), дыхательных мод и вращательных линий воды в гидратном слое. Относительные измерения такого типа потенциально более эффективны, чем другие, ныне известные [40], поскольку сравнение происходит с рассчитанными из первых принципов резонансами Бриллюэна, амплитуда которых зависит только от макроскопических характеристик среды.

Дальнейшая работа может развиваться в нескольких направлениях: 1. Изучение динамики образования перекиси водорода в водном растворе ДНК при денатурации; 2. Выяснение динамки изменения отношения орто/пара спин-изомеров воды при вариациях концентрации биополимеров в водных растворах; 3. Детальное изучение величины наблюдаемого в спектрах ЧФР бриллюэновского сдвига от концентрации биополимера в растворе.

Работа выполнялась при частичной поддержке грантов РФФИ 09-02-01173, 08-02-00008 и гранта поддержки научных школ РФ (No. NSh-8108.2006.2).

Литература

- 1. S. Garde, G. Hammer, A.E. Garcia, M.E. Paulaitis, and L.R. Pratt, Phys. Rev. Lett. 77, 4966 (1998).
- 2. T.F. Miller, E. Vanden-Eijnden, and D. Chandler, Proc. Natl. Acad. Sci. 104, 14559, (2007).
- 3. P. Liu, X.H. Huang, R.H. Zhou and B.J.Berne, Nature (London) 437, 159 (2005).
- 4. Y.Zhu, and S.Granick, Phys. Rev. Lett. 88, 106102 (2002).
- 5. Y. Levy, and J.N. Onuchic, Proc. Natl. Acad. Sci. 101, 3325 (2004).

Сборник избранных трудов V Международного конгресса «Слабые и сверхслабые поля и излучения в биологии и медицине»

- 6. F.H. Stillinger, J. Solution Chem. 2, 141 (1973).
- 7. A.P. Willard, and D. Chandler J. Phys. Chem. B 112, 6187 (2008).
- 8. Poynor, L. Hong, I.K. Robinson, S. Granick, Z. Zhang, and P.A.Fenter, Phys. Rev. Lett. 97, 266101, (2006).
- 9. M. Mezger, H. Reichert, S. Schöder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston, and V. Honkimäki, Proc. Natl. Acad. Sci. **103**, 18401 (2006).
- 10. Z. Ge, D.G. Cahill, and P.V. Braun, Phys. Rev. Lett. 96, 186101, (2006).
- 11. Y.-C. Liou, A. Tocilj, P.L. Davies, Z. Jia, Nature 2000; 406: 322.
- 12. S.P. Graether, M.J. Kuiper, S.M. Gagne, V.K. Walker, Z. Jia, B.D. Sykes, P.L. Davies, Nature 2000; 406: 325.
- 13. U. Heugen, G. Schwaab, E. Brundermann, M. Heyden, X. Yu, D.M. Leitner, M. Havenith, *Proc. Natl. Acad. Sci., USA*, 2006; 103: 12301.
- 14. S.Ebbinghaus, S.J.Kim, M. Heyden, X. Yu, M.Gruebele, D.M. Leitner, M. Havenith, J.Am.Chem.Soc. 2008, **130**, 2374-2375.
- 15. D.Eisenberg, and W.Kauzmann, The Structure and Properties of Water, (Clarendon Press, Oxford, 2005).
- 16. А.Ф. Бункин, С.М.Першин, А.П.Горчаков, А.А. Нурматов, Письма в ЖТФ, 32, 20 (2006).
- 17. А.Ф. Бункин, А.А. Нурматов, С.М. Першин, УФН, 176, 883 (2006).
- 18. A.F. Bunkin, and S.M. Pershin, Journal of Raman Spectroscopy, 39, 726 (2008).
- 19. Ахманов С.А., Коротеев Н.И. *Методы нелинейной оптики в спектроскопии рассеяния света* (М.: Наука, 1981).
- 20. Андреев А.В., Емельянов В.И., Ильинский Ю.А. Кооперативные явления в оптике (М.: Наука, 1988).
- 21. Bunkin A.F., Nurmatov A.A., Pershin S.M, Laser Phys. 17, 22 (2007).
- L. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, Jr.K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennison, R.N. Tolchenov, R.A. Toth, V.J. Auwera, P. Varanasi, G. Wagner, J. Quant. Spectr. Radiant. Transfer. 96, 139 (2005). <u>www.elsevier.com/locate/jqsrt</u>
- 23. Tikhonov V.I., Volkov A.A., Science 296, 2363, (2002).
- 24. Potekhin S.A., Khusainova R.S., Biophisical Chemistry 118, 79, (2005).
- 25. E. Nakamura, and H. Isobe, Accounts of Chemical Research, 36, 807 (2003).
- 26. A.F. Bunkin, and S.M. Pershin, Laser Physics Letters v.4, #4, 270-274, 2007.
- 27. Bunkin A.F., Nurmatov A.A. Laser Physics, 13, 328, (2003).
- 28. А.Ф.Бункин, А.А.Нурматов, С.М.Першин, Р.С.Хусаинова, С.А.Потехин Квантовая электроника, т.37, №10 941-945 (2007)
- 29. J.H.J. Scott, S.A. Majetich, Phys. Rev. 1995; B 52: 12564.
- G. E. Walrafen, in *Water: A Comprehensive Treatise*, edited by F. Franks (Plenum, New York, 1972), Vol. 1; G. E. Walrafen, J. Phys. Chem. **94**, 2237 (1990); E. W. Castner, Y. J. Chang, Y. C. Chu, and G. E. Walrafen, *ibid.* **102**, 653 (1995).
- 31. Брусков В.И., Масалимов Ж.К., Черников А.В. Доклады РАН (биофизика), 384, 821 (2002).
- 32. Бенсассон Р., Ленд Э., Праскот Т. Флеш-фотолиз и импульсный радиолиз, М., Мир, 1987, 398 с.
- 33. Bunkin A.F., Nurmatov A.A., Pershin S.M, Laser Phys.Lett., <u>3</u>, 275 (2006).
- 34. Y.Xu, P.E.Pehrsson, L.Chen, R.Zhang, W.Zhao, J.Phys.Chem. C 2007, 111, 8638-8643.
- 35. Dresselhaus M.S., Dresselhaus G., Eklund P.S. Science of Fullerenes and Carbon Nanotubes. Academic Press: New York, 1996; 1.
- 36. Fantini C, Jorio A, Souza M, Strano M.S, Dresselhaus M.S, Pimenta M.A. *Phys. Rev. Lett.* 2004: **93**: 147406.
- 37. O'Connell M.J., Sivaram S, Doorn S.K. Phys. Rev. B 2004: 69: 235415.
- 38. E. Nakamura, and H. Isobe, Accounts of Chemical Research, 36, 807 (2003).
- 39. Jacobson A.G, Shen Y.R. Appl. Phys. Lett. 1979: 34: 464.
- 40. Zhang B.P, Shimazaki K, Shiorawa T, Suzuki M, Ishibashi K, Satio R. Appl. Phys. Lett. 2006; 88: 241101.
- 41. Fabelinskii I.L Physics Uspekhi. 1994; 37: 821.
- 42. Frochtenicht R., Kalodis M., Koch M., Huisken F. J. Chem. Phys., <u>105</u>, 6128 (1996).
- 43. Redington R.L., Milligan D.E. J. Chem. Phys., <u>37</u>, 2162 (1962).
- 44. «Вода: структура, состояние, сольватация» под ред. А.М.Кутепова, М., «Наука», 2003г., 400с.
- 45. Yamaguchi T., Chong S.-H., Hirata F. J. Chem. Phys., <u>119</u>, 1021 (2003).
- 46. Yamaguchi T., Matsuoka T., Koda S. J. Chem. Phys., <u>120</u>, 7590 (2004).
- 47. Chandler D. Nature 2007; 445: 831.
- 48. Willard A.P, Chandler D. J. Phys. Chem. B 2008; 112: 6187.